8 research outputs found

    Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts.

    Get PDF
    Organelle contact sites perform fundamental functions in cells, including lipid and ion homeostasis, membrane dynamics, and signaling. Using a forward proteomics approach in yeast, we identified new ER-mitochondria and ER-vacuole contacts specified by an uncharacterized protein, Ylr072w. Ylr072w is a conserved protein with GRAM and VASt domains that selectively transports sterols and is thus termed Ltc1, for Lipid transfer at contact site 1. Ltc1 localized to ER-mitochondria and ER-vacuole contacts via the mitochondrial import receptors Tom70/71 and the vacuolar protein Vac8, respectively. At mitochondria, Ltc1 was required for cell viability in the absence of Mdm34, a subunit of the ER-mitochondria encounter structure. At vacuoles, Ltc1 was required for sterol-enriched membrane domain formation in response to stress. Increasing the proportion of Ltc1 at vacuoles was sufficient to induce sterol-enriched vacuolar domains without stress. Thus, our data support a model in which Ltc1 is a sterol-dependent regulator of organelle and cellular homeostasis via its dual localization to ER-mitochondria and ER-vacuole contact sites

    Expression, purification and preliminary crystallographic analysis of Mycobacterium tuberculosis CysQ, a phosphatase involved in sulfur metabolism.

    No full text
    CysQ is part of the sulfur-activation pathway that dephosphorylates 3'-phosphoadenosine 5'-monophosphate (PAP) to regenerate adenosine 5'-monophosphate (AMP) and free phosphate. PAP is the product of sulfate-transfer reactions from sulfotransferases that use the universal sulfate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS). In some organisms PAP is also the product of PAPS reductases that reduce sulfate from PAPS to sulfite. CysQ from Mycobacterium tuberculosis, which plays an important role in the biosynthesis of sulfated glycoconjugates, was successfully purified and crystallized in 24% PEG 1500, 20% glycerol. X-ray diffraction data were collected to 1.7 Å resolution using a synchrotron-radiation source. Crystals grew in the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a=40.3, b=57.9, c=101.7 Å and with one monomer per asymmetric unit

    Ltc1 is an ER-localized sterol transporter and a component of ER–mitochondria and ER–vacuole contacts

    No full text
    Organelle contact sites perform fundamental functions in cells, including lipid and ion homeostasis, membrane dynamics, and signaling. Using a forward proteomics approach in yeast, we identified new ER–mitochondria and ER–vacuole contacts specified by an uncharacterized protein, Ylr072w. Ylr072w is a conserved protein with GRAM and VASt domains that selectively transports sterols and is thus termed Ltc1, for Lipid transfer at contact site 1. Ltc1 localized to ER–mitochondria and ER–vacuole contacts via the mitochondrial import receptors Tom70/71 and the vacuolar protein Vac8, respectively. At mitochondria, Ltc1 was required for cell viability in the absence of Mdm34, a subunit of the ER–mitochondria encounter structure. At vacuoles, Ltc1 was required for sterol-enriched membrane domain formation in response to stress. Increasing the proportion of Ltc1 at vacuoles was sufficient to induce sterol-enriched vacuolar domains without stress. Thus, our data support a model in which Ltc1 is a sterol-dependent regulator of organelle and cellular homeostasis via its dual localization to ER–mitochondria and ER–vacuole contact sites
    corecore